哈希Code生成

Catalogue
  1. 1. 简介
  2. 2. 源码

简介

hashcode 采用map底层的hashcode 方式,提前源码重新封装实现,最大实现hashcode生产效率

源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
package hash

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Hashing algorithm inspired by
// xxhash: https://code.google.com/p/xxhash/
// cityhash: https://code.google.com/p/cityhash/

// +build amd64 amd64p32 arm64 mips64 mips64le ppc64 ppc64le s390x wasm

import (
"strings"
"unsafe"
)

const (
// Constants for multiplication: four random odd 64-bit numbers.
m1 = 16877499708836156737
m2 = 2820277070424839065
m3 = 9497967016996688599
m4 = 15839092249703872147
)

func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
func readUnaligned32(p unsafe.Pointer) uint32 {
q := (*[4]byte)(p)
return uint32(q[0]) + uint32(q[1])<<8 + uint32(q[2])<<16 + uint32(q[3])<<24
}
func readUnaligned64(p unsafe.Pointer) uint64 {
q := (*[8]byte)(p)
return uint64(q[0]) + uint64(q[1])<<8 + uint64(q[2])<<16 + uint64(q[3])<<24 + uint64(q[4])<<32 + uint64(q[5])<<40 + uint64(q[6])<<48 + uint64(q[7])<<56
}

var hashkey [4]uintptr

type stringStruct struct {
str unsafe.Pointer
len int
}

//Strhash (r string)
// return uintptr64
func Strhash(r string) uintptr {
return memhash(unsafe.Pointer(&r), 3, uintptr(strings.Count(r, "")-1))
}
func memhash(p unsafe.Pointer, seed, s uintptr) uintptr {
hashkey[0] |= 1 // make sure these numbers are odd
hashkey[1] |= 1
hashkey[2] |= 1
hashkey[3] |= 1
h := uint64(seed + s*hashkey[0])
tail:
switch {
case s == 0:
case s < 4:
h ^= uint64(*(*byte)(p))
h ^= uint64(*(*byte)(add(p, s>>1))) << 8
h ^= uint64(*(*byte)(add(p, s-1))) << 16
h = rotl_31(h*m1) * m2
case s <= 8:
h ^= uint64(readUnaligned32(p))
h ^= uint64(readUnaligned32(add(p, s-4))) << 32
h = rotl_31(h*m1) * m2
case s <= 16:
h ^= readUnaligned64(p)
h = rotl_31(h*m1) * m2
h ^= readUnaligned64(add(p, s-8))
h = rotl_31(h*m1) * m2
case s <= 32:
h ^= readUnaligned64(p)
h = rotl_31(h*m1) * m2
h ^= readUnaligned64(add(p, 8))
h = rotl_31(h*m1) * m2
h ^= readUnaligned64(add(p, s-16))
h = rotl_31(h*m1) * m2
h ^= readUnaligned64(add(p, s-8))
h = rotl_31(h*m1) * m2
default:
v1 := h
v2 := uint64(seed * hashkey[1])
v3 := uint64(seed * hashkey[2])
v4 := uint64(seed * hashkey[3])
for s >= 32 {
v1 ^= readUnaligned64(p)
v1 = rotl_31(v1*m1) * m2
p = add(p, 8)
v2 ^= readUnaligned64(p)
v2 = rotl_31(v2*m2) * m3
p = add(p, 8)
v3 ^= readUnaligned64(p)
v3 = rotl_31(v3*m3) * m4
p = add(p, 8)
v4 ^= readUnaligned64(p)
v4 = rotl_31(v4*m4) * m1
p = add(p, 8)
s -= 32
}
h = v1 ^ v2 ^ v3 ^ v4
goto tail
}

h ^= h >> 29
h *= m3
h ^= h >> 32
return uintptr(h)
}

func memhash32(p unsafe.Pointer, seed uintptr) uintptr {
hashkey[0] |= 1 // make sure these numbers are odd
hashkey[1] |= 1
hashkey[2] |= 1
hashkey[3] |= 1
h := uint64(seed + 4*hashkey[0])
v := uint64(readUnaligned32(p))
h ^= v
h ^= v << 32
h = rotl_31(h*m1) * m2
h ^= h >> 29
h *= m3
h ^= h >> 32
return uintptr(h)
}

func memhash64(p unsafe.Pointer, seed uintptr) uintptr {
hashkey[0] |= 1 // make sure these numbers are odd
hashkey[1] |= 1
hashkey[2] |= 1
hashkey[3] |= 1
h := uint64(seed + 8*hashkey[0])
h ^= uint64(readUnaligned32(p)) | uint64(readUnaligned32(add(p, 4)))<<32
h = rotl_31(h*m1) * m2
h ^= h >> 29
h *= m3
h ^= h >> 32
return uintptr(h)
}

// Note: in order to get the compiler to issue rotl instructions, we
// need to constant fold the shift amount by hand.
// TODO: convince the compiler to issue rotl instructions after inlining.
func rotl_31(x uint64) uint64 {
return (x << 31) | (x >> (64 - 31))
}